
Version: 2023-07-20 Page 1

Introduction
TeleREST is a web server interfacing Telemator, enabling REST and JSON access to a subset of the

Telemator functions.

Prerequisites
TeleREST runs on Windows, and requires Telemator and Java JRE to be installed.

Telemator
Telemator must be installed on the target host.

If this is the first time Telemator is installed on the host, download the installation file from the

Telemator download page. Install as described in the Telemator documentation.

Later updates can be downloaded from the Telemator development download page.

The recommended installation folder for Telemator is C:\Telemator

Java
TeleREST requires a Java SE JRE to be installed on the target host.

Installation
Download the latest Java SE JRE from Oracle. Any of the installation options (JDK, Server JRE, or JRE)

should work, as should any version greater or equal to Java 17.

Java can be downloaded from any of these URLs:

• http://java.com/en/download/manual.jsp

• http://www.oracle.com/technetwork/java/javase/downloads/index.html

• Run the downloaded file, and follow the instructions.

Alternatively, you can install OpenJDK 20 from this URL:

• https://jdk.java.net/20/

• And follow the instructions: https://java.tutorials24x7.com/blog/how-to-install-openjdk-14-

on-windows

Run the downloaded file, and follow the instructions.

Environment variables
To make Java easier to work with, it is recommended to add the environment variable JAVA_HOME

set to the installation path of Java to the target host. This can be done by right clicking on ‘This PC’ in

the explorer window and selecting ‘Properties’. Then click ‘Advanced system settings’ to bring up the

System Properties dialog box. At the bottom of the ‘Advanced’ tab, click ‘Environment Variables…’.

Under ‘System variables’, press ‘New…’ and enter ‘JAVA_HOME’ as the variable name, and the Java

installation path as the variable value (will generally be something like ‘C:\Program Files\Java\jre8’).

Adding Java to the PATH might also help. This can be done by finding the ‘Path’ environment variable

under ‘System variables’, pressing edit, and appending ‘;%JAVA_HOME%\bin’ to the value.

The following are example locations of JAVA_HOME:

• JAVA_HOME=c:\Program Files\Java\jre20

• JAVA_HOME=c:\Program Files\Java\jre1.20.0_05

• JAVA_HOME=c:\Program Files\Java\jdk1.20.0_05

https://mxdata.no/oppdateringer/
https://mxdata.no/telematorbeta
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://java.com/en/download/manual.jsp
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jdk.java.net/20/
https://java.tutorials24x7.com/blog/how-to-install-openjdk-14-on-windows
https://java.tutorials24x7.com/blog/how-to-install-openjdk-14-on-windows

Version: 2023-07-20 Page 2

Installation
To install TeleREST, download from https://mxdata.no/download/telerest.zip and extract the file to a

location of your choosing. The recommended location is C:\Telerest.

You must then specify the database location in the file C:\Telerest\application.yml.

To start TeleREST, just run the C:\Telerest\telerest.bat file.

Alternatively, to start TeleREST using java, employ the following command:

cd C:\Telerest

java –jar telerest-version.jar

For more configuration options, see the appendix ‘The application.yml file.’

Installing TeleREST as a Windows service
TeleREST may be run as a Windows service, so the program can run without manually logging in and

starting it.

To install TeleREST as a Windows service, run the following commands as administrator:

 cd \Telerest

 telerest.exe install /p

 telerest.exe start

You will be prompted for the user account the service should run as; the specified command must

allow network access, and Telemator will run in this account. Answer yes when prompted whether

‘Log on as a service’ should be granted to the account.

Example in «Administator: Command Prompt»
C:\>cd \telerest

C:\telerest>telerest.exe install /p
2023-04-19 16:26:44,836 INFO - Starting ServiceWrapper in the CLI mode

Username: .\Username

Password: *******

Set Account rights to allow log on as a service (y/n)?: y

2023-04-19 16:26:56,071 INFO - Completed. Exit code is 0

C:\telerest>telerest.exe start

2023-04-19 16:27:04,024 INFO - Starting ServiceWrapper in the CLI mode
2023-04-19 16:27:04,242 INFO - Completed. Exit code is 0

The TeleREST service can now be controlled from the Services application, or you may control it using

telerest.exe. Type ‘telerest.exe help’ for a summary of available commands.

The service will log to several files in the installation directory.

To remove the TeleREST service, type ‘telerest.exe stop’ (if the service is running), followed by

‘telerest.exe uninstall’.

More information about the Windows service wrapper (winsw) can be found here.

https://mxdata.no/download/telerest.zip
https://github.com/kohsuke/winsw/blob/master/README.md

Version: 2023-07-20 Page 3

Privileges: The user account running the service should be member of the administrators group to

avoid problems with COM permissions (Event viewer shows Event 10016). If not, you will have to

give extra COM permissions (google “Event 10016”).

REST Functions
This section specifies the available REST service calls in detail.

General
The general idea of a REST service is that the URL specifies a collection of resources (e.g.

http://host/telemator/cables) or a specific resource (e.g. http://host/telemator/cables/123). When

connecting to a URL, the HTTP method specified on the connection determines the action taken on

the resource or collection of resources. The most common HTTP methods are:

• GET – Gets the specified resource. The resource is described in the response content, and is

usually in a machine-readable format like JSON or XML.

• POST – Creates a new resource. The resource is created according to the description

contained in the request content, again in a format like JSON or XML. The URL of the new

resource is returned in the Location response header value.

• PUT – Updates the specified resource. Again the request content contains the description of

the update.

• DELETE – Deletes the specified resource.

The HTTP response codes tells the caller if the operation was successful, or if an error occurred.

Common errors are 404 if a specific resource was not found, and 406 if the request content, or

payload, contains errors.

The REST service operations may be modified by adding header values to the request. For example,

the media type of the request content is specified with a Content-Type header, and the media type of

the response content with the Accept header.

TeleREST only supports JSON as payload, so the client needs to specify the following headers on

service calls to the server:

Header Value

Content-Type application/json; charset=UTF-8

Accept application/json

Encoding IDs
Since Telemator allows characters in IDs that are invalid in URLs, you must url-encode IDs that

contains any such characters (these include \, /, %, &, ?, among others. See URL encoding on

Wikipedia or RFC 3986 - Uniform Resource Identifier (URI)). The normal URL encoding (or %-encoding

as it is also called) will allow you to pass most IDs in the URL, but some characters might still pose

problems, most notably \ (backslash).

To allow these problematic characters, you can base 64 url encode (see also RFC 4648). To do this,

you need to set the following header on service calls to the server:

Header Value

TeleRestIDEncoding base64url

http://host/telemator/cables
http://host/telemator/cables/123
https://en.wikipedia.org/wiki/URL_encoding
https://datatracker.ietf.org/doc/html/rfc3986
https://en.wikipedia.org/wiki/Base64
https://datatracker.ietf.org/doc/html/rfc4648#section-5

Version: 2023-07-20 Page 4

When this header is set, TeleREST assumes the ID in the URL is base64url encoded, and decodes this

before passing it on to Telemator. No other IDs (in URL query parameters or JSON payloads) are

encoded. The one notable exception to this is the Location header returned on a successful POST

(create) operation, which will contain a base64url encoded ID if the POST operation has the

TeleRestIDEncoding set.

SSL
In order to secure the connection to TeleREST with SSL (HTTPS), a reverse proxy must be placed in

front. Any one of Apache, IIS or Nginx (among others) can perform the task. The reverse proxy must

be set up to terminate the SSL connection and forward the request to TeleREST. TeleREST supports

the X-Forwarded-Host reverse proxy header when creating the Location response header for a POST

operation, but depending on the reverse proxy the header value may need rewriting to return the

correct protocol and port. Please consult your reverse proxy documentation.

Authentication and Authorization
At this point, TeleREST has no authentication and/or authorization built-in. As for SSL, this can be

achieved by placing a reverse proxy in front of the application. For documentation and examples, see

Apache HTTP Server - Authentication and Authorization, IIS Security, or NGINX Security Controls.

Points

Get point
Gets the description of the point with the specified ID.

URL http://localhost:8080/telemator/points/{id}
http://localhost:8080/telemator/points?End={id}

Method GET

Parameters id – ID of point

HTTP status codes 200 – OK
404 – Not found if no point with specified ID found

Example response payload {"Point" : {"end" : "P1", "type" : "MANHOLE", "Addr3" : "Oslo"}}

Get point with cable fine-termination [v 0.2.0 / 16.01.031]
Gets the description of the point with the specified ID.

URL http://localhost:8080/telemator/points/{id}/cabterm
http://localhost:8080/telemator/points?End={id}&opt=cabterm

Method GET

Parameters id – ID of point

HTTP status codes 200 – OK
404 – Not found if no point with specified ID found

Example response payload {"Point" : {"end" : "P1", "type" : "MANHOLE", " Addr3" : "Oslo",
 "CabTerm" : [
 {"Cable" : "K1", "FromCore" : 1, "Rack" : "R01" },
 {"Cable" : "K2", "FromCore" : 2, "Rack" : "R01" }
]}
}}

Get point with affected customers and circuits [v 0.2.2 / 17.0]
Gets customers, circuits and circuit end-points affected by a fault in the point with the specified ID.

URL http://localhost:8080/telemator/points/{id}/affects
http://localhost:8080/telemator/points?End={id}&opt=affects

Method GET

Parameters id – ID of point

HTTP status codes 200 – OK
404 – Not found if no point with specified ID found

https://httpd.apache.org/docs/2.4/howto/auth.html
https://learn.microsoft.com/en-us/iis/configuration/system.webserver/security/
https://docs.nginx.com/nginx/admin-guide/security-controls/
http://localhost:8080/telemator/points/%7bid%7d/cabterm
http://localhost:8080/telemator/points/%7bid%7d/affects

Version: 2023-07-20 Page 5

Example response payload {"Point" : {"end" : "P1", "type" : "MANHOLE"," Addr3":"Oslo",…},
 "Affects" : {
 "Circuit" : [{"Circuit" : "1000","Type" : "VOIP",…},
 {"Circuit" : "1001","Type" : "INTERNET",…}],
 "Customer" : [{"CustId" : "1002", "Name" : "Company LTD",…},
 {"CustId" : "1003", "Name" : "John Doe",…}],
 "Point" : [{"End" : "P1004", "Type" : "DELIVERY",…},
 {"End" : "P1005", "Type" : "DELIVERY",…}] }
}

Get all points, optional filter on End, Type, Model, Status or Project [v 1.0.0 / 20.01.060]
Gets the description of the points with the specified type.

URL http://localhost:8080/telemator/points?type={type}&count={count}&offset={
offset}

Method GET

Parameters type – Type of point (e.g. type=FIBERBYGG) (optional)
count – Number of elements to return (optional)
offset – Zero-based index of first element to return (optional)

HTTP status codes 200 – OK
404 – None found

Example response payload {
 "Point" : [
 {"end" : "P1", "addr1" : "Oslo"},
 {"end" : "P2", "addr1" : "Bergen"}
],
 "hasMore": false,
 "offset": 0
}

Create point [v 0.3.0 / 17.01.030]
Creates a new point with given ID and information from the payload.

URL http://localhost:8080/telemator/points/{id}
http://localhost:8080/telemator/points?End={id}

Method POST

Parameters

id – ID of point (optional if payload contains "AllowAutoId": true)

HTTP status codes 201 – (Created) if the point resource is successfully updated, in
addition to a Location header that contains the link to the newly created
point resource
404 - (Not found) if the optional "CopyFrom": point template resource not
found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CopyFrom" : "TEMPLATE-1111",
 "AllowAutoId" : true,
 "Point" : {"end" : "P1", "type" : "MANHOLE","Addr3":"Oslo",…}
}

Response payload {}

Response headers Location – URL of newly created point resource.

Update point [v 0.3.0 / 21.01.087]
Updates the point with the specified ID.

URL http://localhost:8080/telemator/points/{id}
http://localhost:8080/telemator/points?End={id}

Method PUT

Parameters id – ID of point

HTTP status codes 200 – (Ok) if the point resource is successfully updated
404 - (Not found) if point resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Version: 2023-07-20 Page 6

Request payload {"Point" : {"end" : "P1", "type" : "MANHOLE","Addr3":"Oslo",…}}

Response payload {}

Delete point [v 0.3.0 /19.01.070]
Deletes the point with the specified ID.

URL http://localhost:8080/telemator/points/{id}
http://localhost:8080/telemator/points?End={id}

Method DELETE

HTTP status codes 200 – (Ok) if the point resource is successfully deleted
404 - (Not found) if the point resource not found
406 - (Not acceptable) if invalid request or not possible to delete

Response payload {}

Traces

Get trace [v 0.2.0 / 16.01.031]
Gets the description of the trace with the specified ID.

URL http://localhost:8080/telemator/traces/{id}
http://localhost:8080/telemator/traces?PipeMain={id}

Method GET

Parameters id – ID of trace

HTTP status codes 200 – OK
404 – Not found if no trace with specified ID found

Example response payload {"PipeMain" : {"PipeMain": "T1", End_A" : "P1", End_B" : "P2"}}

Get trace with affected customers and circuits [v 0.2.2 / 17.0]
Gets customers, circuits and circuit end-points affected by a fault in the trace with the specified ID.

URL http://localhost:8080/telemator/traces/{id}/affects
http://localhost:8080/telemator/traces?PipeMain={id}&opt=affects

Method GET

Parameters id – ID of trace

HTTP status codes 200 – OK
404 – Not found if no trace with specified ID found

Example response payload {"PipeMain" : {"PipeMain": "T1", End_A" : "P1", End_B" : "P2",…}
 "Affects" : {
 "Circuit" : [{"Circuit" : "1000","Type" : "VOIP",…},
 {"Circuit" : "1001","Type" : "INTERNET",…}],
 "Customer" : [{"CustId" : "1002", "Name" : "Company LTD",…},
 {"CustId" : "1003", "Name" : "John Doe",…}],
 "Point" : [{"End" : "P1004", "Type" : "DELIVERY",…},
 {"End" : "P1005", "Type" : "DELIVERY",…}] }
}

Get all traces, optional filter on PipeMain, Type, Status, Project, End_A or End_B [v1.0.0 / 20.01.060]
URL http://localhost:8080/telemator/traces?type={type}&count={count}&offset={

offset}

Method GET

Parameters type – Type (e.g. type=XXX) (optional)
count – Number of elements to return (optional)
offset – Zero-based index of first element to return (optional)

HTTP status codes 200 – OK
404 – None found

Example response payload {
 "PipeMain" : [
 {"PipeMain": "T1", End_A" : "P1", End_B" : "P2",…}
],
 "hasMore": false,

Version: 2023-07-20 Page 7

 "offset": 0
}

Create trace [v 0.3.0 / 17.01.030]
Creates a new trace with given ID and information from the payload.

URL http://localhost:8080/telemator/traces/{id}
http://localhost:8080/telemator/traces?PipeMain={id}

Method POST

Parameters id – ID of point (optional if payload contains "AllowAutoId": true)

HTTP status codes 201 – (Created) if the trace resource is successfully updated, in
addition to a Location header that contains the link to the newly created
trace resource
404 - (Not found) if the optional "CopyFrom": trace template resource not
found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CopyFrom" : "TEMPLATE-1111",
 "AllowAutoId" : true,
 "PipeMain" : { ??? }
}

Response payload {}

Response headers Location – URL of newly created trace resource.

Update trace [v 0.3.0 / 21.01.087]
Updates the trace with the specified ID.

URL http://localhost:8080/telemator/traces/{id}
http://localhost:8080/telemator/traces?PipeMain={id}

Method PUT

Parameters id – ID of trace

HTTP status codes 200 – (Ok) if the trace resource is successfully updated
404 - (Not found) if trace resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {"Point" : { ??? }}

Response payload {}

Delete trace [v 0.3.0 / 21.01.086]
Deletes the trace with the specified ID.

URL http://localhost:8080/telemator/traces/{id}
http://localhost:8080/telemator/traces?PipeMain={id}

Method DELETE

HTTP status codes 200 – (Ok) if the trace resource is successfully deleted
404 - (Not found) if the trace resource not found
406 - (Not acceptable) if invalid request or not possible to delete

Response payload {}

Cables

Get cable
Gets the description of the cable with the specified ID.

URL http://localhost:8080/telemator/cables/{id}
http://localhost:8080/telemator/cables?Cable={id}

Method GET

Parameters id – ID of cable

Version: 2023-07-20 Page 8

HTTP status codes 200 – OK
404 – Not found if no cable with specified ID found

Example response payload {"Cable" : {"Cable": "K1", "NumCores": 200, "End_A" : "P12"}}

Get cable with routing
Gets the description, including routing information, of the cable with the specified ID.

URL http://localhost:8080/telemator/cables/{id}/routing
http://localhost:8080/telemator/cables?Cable={id}&opt=routing

Method GET

Parameters id – ID of cable

HTTP status codes 200 – OK
404 – Not found if no cable with specified ID found

Example response payload {"Cable" : {
 "Cable" : "K1", "NumCores" : 200, "End_A" : "P12",
 "CabCore" : [
 {"Cable" : "K1", "Core" : 1},
 {"Cable" : "K1", "Core" : 2}
]}
}

Get cable with traces/ducts it goes through [v 0.2.0 / 16.01.031]
Gets the description, including trace/duct information, of the cable with the specified ID.

URL http://localhost:8080/telemator/cables/{id}/ducts
http://localhost:8080/telemator/cables?Cable={id}&opt=ducts

Method GET

Parameters id – ID of cable

HTTP status codes 200 – OK
404 – Not found if no cable with specified ID found

Example response payload {"Cable" : {
 "Cable" : "K1", "NumCores" : 200, "End_A" : "P12",
 "PipeCab" : [
 {"PipeMain" : "TRACE1", "PipeSub" : "DUCT1-1"},
 {"PipeMain" : "TRACE2", "PipeSub" : "DUCT1-1"}
]}
}

Get cable with affected customers and circuits [v 0.2.2 / 17.0]
Gets customers, circuits and circuit end-points affected by a fault in the cable with the specified ID.

URL http://localhost:8080/telemator/cables/{id}/affects
http://localhost:8080/telemator/cables?Cable={id}&opt=affects

Method GET

Parameters id – ID of cable

HTTP status codes 200 – OK
404 – Not found if no cable with specified ID found

Example response payload {"Cable" : { "Cable" : "K1", "NumCores" : 200, "End_A" : "P12",… },
 "Affects" : {
 "Circuit" : [{"Circuit" : "1000","Type" : "VOIP",…},
 {"Circuit" : "1001","Type" : "INTERNET",…}],
 "Customer" : [{"CustId" : "1002", "Name" : "Company LTD",…},
 {"CustId" : "1003", "Name" : "John Doe",…}],
 "Point" : [{"End" : "P1004", "Type" : "DELIVERY",…},
 {"End" : "P1005", "Type" : "DELIVERY",…}] }
}

Get all cables, optional filter on Cable, TypeCode, Status, Project, End_A or End_B [v1.0.0 /

20.01.060]
URL http://localhost:8080/telemator/cables?type={type}&count={count}&offset={

offset}

Version: 2023-07-20 Page 9

Method GET

Parameters type – Type (e.g. type=XXX) (optional)
count – Number of elements to return (optional)
offset – Zero-based index of first element to return (optional)

HTTP status codes 200 – OK
404 – None found

Example response payload {
 "Cable" : [
 {"Cable": "K1", End_A" : "P1", End_B" : "P2",…}
],
 "hasMore": false,
 "offset": 0
}

Create cable [v 0.3.0 / 17.01.030]
Creates a new cable with given ID and information from the payload.

URL http://localhost:8080/telemator/cables/{id}
http://localhost:8080/telemator/cables?Cable={id}

Method POST

Parameters id – ID of cable (optional if payload contains "AllowAutoId": true)

HTTP status codes 201 – (Created) if the cable resource is successfully updated, in
addition to a Location header that contains the link to the newly created
cable resource
404 - (Not found) if the optional "CopyFrom": cable template resource not
found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CopyFrom" : "TEMPLATE-1111",
 "AllowAutoId" : true,
 "Cable" : { "Cable" : "K1", "NumCores" : 200, "End_A" : "P12",…}
}

Response payload {}

Response headers Location – URL of newly created cable resource.

Update cable [v 1.6.0 / 23.0.0]
Updates the cable with the specified ID.

URL http://localhost:8080/telemator/cables/{id}
http://localhost:8080/telemator/cables?Cable={id}

Method PUT

Parameters id – ID of cable

HTTP status codes 200 – (Ok) if the cable resource is successfully updated
404 - (Not found) if cable resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {"Cable" : { "Cable" : "K1", "NumCores" : 200, "End_A" : "P12",…}}

Response payload {}

Delete cable [v 1.6.0 / 23.0.0]
Deletes the cable with the specified ID.

URL http://localhost:8080/telemator/cables/{id}
http://localhost:8080/telemator/cables?Cable={id}

Method DELETE

HTTP status codes 200 – (Ok) if the cable resource is successfully deleted
404 - (Not found) if the cable resource not found
406 - (Not acceptable) if invalid request or not possible to delete

Response payload {}

Version: 2023-07-20 Page 10

Circuits

Get circuit
Gets the description of the circuit with the specified ID.

URL http://localhost:8080/telemator/circuits/{id}
http://localhost:8080/telemator/circuits?Circuit={id}

Method GET

Parameters id – ID of circuit

HTTP status codes 200 – OK
404 – Not found if no circuit with specified ID found

Example response payload {"Circuit" : {"circuit" : "1000", "type" : "ADSL", "speed" : "100 Mbps"}}

Get circuit with routing [“Cable” and “computed_Path” came in v 18.01.031]
Gets the description, including routing information, of the circuit with the specified ID.

URL http://localhost:8080/telemator/circuits/{id}/routing
http://localhost:8080/telemator/circuits?Circuit={id}&opt=routing

Method GET

Parameters id – ID of circuit

HTTP status codes 200 – OK
404 – Not found if no circuit with specified ID found

Example response payload {"Circuit" : {
 "circuit" : "1000", "type" : "ADSL", "speed" : "100 Mbps",
 "CabCore" : [
 {"cable" : "K1", "core" : 1},
 {"cable" : "K1", "core" : 2}
],
 "EqPin" : [
 {"end" : "EQ1", "card" : "C12"},
 {"end" : "EQ2", "card" : "C12"}
]},

 "Cable" : [{"K1", "End_A" : "P1","End_B" : "P2"}],
 "calculated_Path" : [
 {"end" : "P1", "IsEquipm" :0, "computed_Lvl" :1 },
 {"end" : "EQ1", "IsEquipm" :1, "computed_Lvl" :2 }
]},
}

Get all circuits, optional filter on Circuit, Type or Project [v1.0.0 / 20.01.060]
URL http://localhost:8080/telemator/circuits?type={type}&count={count}&offset

={offset}

Method GET

Parameters type – Type (e.g. type=XXX) (optional)
count – Number of elements to return (optional)
offset – Zero-based index of first element to return (optional)

HTTP status codes 200 – OK
404 – None found

Example response payload {
 "Circuit" : [
 {"Circuit" : "1000", "type" : "ADSL", "speed" : "100 Mbps"}
],
 "hasMore": false,
 "offset": 0
}

Create circuit
Creates a new circuit with given ID and information from the payload.

URL http://localhost:8080/telemator/circuits/{id}
http://localhost:8080/telemator/circuits?Circuit={id}

Method POST

Version: 2023-07-20 Page 11

Parameters id – ID of circuit (optional if payload contains "AllowAutoId": true)

HTTP status codes 201 – (Created) if the circuit resource is successfully updated, in
addition to a Location header that contains the link to the newly created
circuit resource
404 - (Not found) if the optional "CopyFrom": circuit template resource
not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CopyFrom" : "TEMPLATE-1111",
 "AllowAutoId" : true,
 "Circuit" : {"type" : "ADSL", "speed" : "100 Mbps"}
}

Response payload {}

Response headers Location – URL of newly created circuit resource.

Update circuit
Updates the circuit with the specified ID.

URL http://localhost:8080/telemator/circuits/{id}
http://localhost:8080/telemator/circuits?Circuit={id}

Method PUT

Parameters id – ID of circuit

HTTP status codes 200 – (Ok) if the circuit resource is successfully updated
404 - (Not found) if circuit resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {"Circuit" : {"type" : "ADSL", "speed" : "100 Mbps"}}

Response payload {}

Delete circuit [v 1.2.0 / 20.01.016]
Deletes the circuit with the specified ID.

URL http://localhost:8080/telemator/circuits/{id}
http://localhost:8080/telemator/circuits?Circuit={id}

Method DELETE

HTTP status codes 200 – (Ok) if the trace resource is successfully deleted
404 - (Not found) if the circuit resource not found
406 - (Not acceptable) if invalid request or not possible to delete

Response payload {}

Customers

Get customer
Gets the description of the customer with the specified ID.

URL http://localhost:8080/telemator/customers/{id}
http://localhost:8080/telemator/customers?CustId={id}

Method GET

Parameters id – ID of customer

HTTP status codes 200 – OK
404 – Not found if no customer with specified ID found

Example response payload {"Customer" : {"CustId" : "1000", "Name" : "General Motors UK"}}

Get all customers, optional filter on CustId, Name, Project or OrgNum [v 1.2.0 / 20.01.062]
Gets the description of the customer with the specified ID.

URL http://localhost:8080/telemator/customers?
OrgNum={text}&count={count}&offset={offset}

Version: 2023-07-20 Page 12

Method GET

Parameters type – Type (e.g. type=XXX) (optional)
count – Number of elements to return (optional)
offset – Zero-based index of first element to return (optional)

HTTP status codes 200 – OK
404 – None found

Example response payload {"Customer" : [{"CustId" : "1000", "Name" : "General Motors UK"}],
"hasMore":false,"offset":0}

Create customer
Creates a new customer with given ID and information from the payload.

URL http://localhost:8080/telemator/customers/{id}
http://localhost:8080/telemator/customers?CustId={id}

Method POST

Parameters id – ID of customer (optional if payload contains "AllowAutoId": true)

HTTP status codes 201 – (Created) if the customer resource is successfully updated, in
addition to a Location header that contains the link to the newly created
customer resource
404 - (Not found) if the optional "CopyFrom": customer template resource
not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CopyFrom" : "TEMPLATE-1111",
 "AllowAutoId" : true,
 "Customer" : {"name" : "Toyota Norway", "orgnum" : "976938941"}
}

Response payload {}

Response headers Location – URL of newly created customer resource.

Update customer
Updates the customer with the specified ID.

URL http://localhost:8080/telemator/customers/{id}
http://localhost:8080/telemator/customers?CustId={id}

Method PUT

Parameters id – ID of customer

HTTP status codes 200 – (Ok) if the customer resource is successfully updated
404 - (Not found) if customer resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {"Customer" : {"name" : "Toyota Norge", "orgnum" : "976938941"}}

Response payload {}

Equipment

Get equipment
Gets the description of the equipment with the specified ID.

URL http://localhost:8080/telemator/equipment/{id}
http://localhost:8080/telemator/equipment?End={id}

Method GET

Parameters id – ID of equipment

HTTP status codes 200 – OK
404 – Not found if no equipment with specified ID found

Example response payload {"Equipment" : {"end" : "EQ1", "type" : "MUX", "Addr" : "Oslo"}}

Version: 2023-07-20 Page 13

Get equipment with cards
Gets the description, including cards of the equipment with the specified ID.

URL http://localhost:8080/telemator/equipment/{id}/cards
http://localhost:8080/telemator/equipment?End={id}&opt=cards

Method GET

Parameters id – ID of equipment

HTTP status codes 200 – OK
404 – Not found if no equipment with specified ID found

Example response payload {"Equipment" : {
 "end" : "EQ1", "type" : "MUX", "Addr3" : "Oslo",
 "EqCard" : [
 {"end" : "EQ1", "card" : "C12"},
 {"end" : "EQ2", "card" : "C13"}
]}
 "EqPort" : [
 {"end" : "EQ1", "card" : "C12", "Port" : 1},
 {"end" : "EQ2", "card" : "C13", "Port" : 2}
]}
}

Get equipment with routing
Gets the description, including routing information, of the equipment with the specified ID.

URL http://localhost:8080/telemator/equipment/{id}/routing
http://localhost:8080/telemator/equipment?End={id}&opt=routing

Method GET

Parameters id – ID of equipment

HTTP status codes 200 – OK
404 – Not found if no equipment with specified ID found

Example response payload {"Equipment" : {
 "end" : "EQ1", "type" : "MUX", "Addr3" : "Oslo",
 "CabCore" : [],
 "EqPin" : [
 {"end" : "EQ1", "card" : "C12"},
 {"end" : "EQ2", "card" : "C13"}
]}
}

Get equipment with affected customers and circuits [v 0.2.2 / 17.0]
Gets customers, circuits and circuit end-points affected by a fault in the equipment with the specified

ID.

URL http://localhost:8080/telemator/equipment/{id}/affects
http://localhost:8080/telemator/equipment?End={id}&opt=affects

Method GET

Parameters id – ID of equipment

HTTP status codes 200 – OK
404 – Not found if no equipment with specified ID found

Example response payload {"Equipment" : {"end" : "EQ1", "type" : "MUX", "addr1" : "Oslo",…},
 "Affects" : {
 "Circuit" : [{"Circuit" : "1000","Type" : "VOIP"},
 {"Circuit" : "1001","Type" : "INTERNET"}],
 "Customer" : [{"CustId" : "1002", "Name" : "Company LTD"},
 {"CustId" : "1003", "Name" : "John Doe"}],
 "Point" : [{"End" : "P1004", "Type" : "DELIVERY"},
 {"End" : "P1005", "Type" : "DELIVERY"}] }
}

Get all equipment, optional filter on End, Type, Model, Status or Project
URL http://localhost:8080/telemator/equipment?type={type}&count={count}&offse

t={offset}

http://localhost:8080/telemator/equipment/%7bid%7d/cards
http://localhost:8080/telemator/equipment?End=%7bid%7d&opt=cards
http://localhost:8080/telemator/equipment/%7bid%7d/affects

Version: 2023-07-20 Page 14

Method GET

Parameters type – Type (e.g. type=XXX) (optional)
count – Number of elements to return (optional)
offset – Zero-based index of first element to return (optional)

HTTP status codes 200 – OK
404 – None found

Example response payload {
 "Equipment" : [
 {"end" : "EQ1", "type" : "MUX", "addr1" : "Oslo",…}
],
 "hasMore": false,
 "offset": 0
}

Create equipment [v 0.3.0 / 17.01.030]
Creates a new equipment with given ID and information from the payload.

URL http://localhost:8080/telemator/equipment/{id}
http://localhost:8080/telemator/equipment?End={id}

Method POST

Parameters id – ID of equipment (optional if payload contains "AllowAutoId": true)

HTTP status codes 201 – (Created) if the equipment resource is successfully updated, in
addition to a Location header that contains the link to the newly created
equipment resource
404 - (Not found) if the optional "CopyFrom": equipment template resource
not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CopyFrom" : "TEMPLATE-1111",
 "AllowAutoId" : true,
 "Equipment" : {"end" : "EQ1", "type" : "MUX", "addr1" : "Oslo",…}
}

Response payload {}

Response headers Location – URL of newly created equipment resource.

Update equipment [v 1.6.0 / 23.0.0]
Updates the equipment with the specified ID.

URL http://localhost:8080/telemator/equipment/{id}
http://localhost:8080/telemator/equipment?End={id}

Method PUT

Parameters id – ID of equipment

HTTP status codes 200 – (Ok) if the equipment resource is successfully updated
404 - (Not found) if equipment resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {"Equipment" : {"end" : "EQ1", "type" : "MUX", "addr1" : "Oslo",…}}

Response payload {}

Delete equipment [v 0.3.0 / 19.01.070]
Deletes the equipment with the specified ID.

URL http://localhost:8080/telemator/equipment/{id}
http://localhost:8080/telemator/equipment?End={id}

Method DELETE

HTTP status codes 200 – (Ok) if the equipment resource is successfully deleted
404 - (Not found) if the equipment resource not found
406 - (Not acceptable) if invalid request or not possible to delete

Response payload {}

Version: 2023-07-20 Page 15

Connections between customer and circuit

Create connection
Creates a new connection between a customer and a circuit.

URL http://localhost:8080/telemator/customercircuitconnection

Method POST

HTTP status codes 201 – (Created) if the connection between the customer and circuit
resource is successfully created
404 - (Not found) if the "CustId": customer resource or the "Circuit":
circuit resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CustCirc" : {
 "CustId" : "1234",
 "Circuit" : "1000",
 "Parallel" : 2 // Optional delivery address – normally not included.
 } // 0=none, 1=circuit start end,
} // 2=circuit stop end (default)

Response payload {}

Delete connection
Deletes a connection between a customer and a circuit.

URL http://localhost:8080/telemator/customercircuitconnection

Method DELETE

HTTP status codes 200 – (Ok) if the connection between the customer and circuit resources
is successfully deleted
404 - (Not found) if the "CustId": customer resource or the "Circuit":
circuit resource not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "CustCirc" : {
 "CustId" : "1234",
 "Circuit" : "1000"
 }
}

Response payload {}

Import standard Telemator compound import file
Imports a standard Telemator compound import-file. If there is a single error nothing is imported.

URL http://localhost:8080/telemator/importtablesfromfile

Method POST

HTTP status codes

201 – (Created) if the file is successfully imported
404 - (Not found) if the resource is not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload {
 "IgnoreErrors" : false, // false is default and recommended
 "FileContent" :
"Point\tHEADER\tPoint.End\tPoint.Type\nPoint\tINSERT\tP55\tTYPE5\n"
}

Response payload {"Print_TXT": "Error, Warning and Info messages"}

Version: 2023-07-20 Page 16

Print
In the URLs below, the last element (CircuitCard) specifies the type of print. Both service endpoints

basically do the same thing, but the GET version decides what type of print to make based on the

Accept HTTP header, and receives the filter as a URL encoded parameter containing the JSON filter.

Get print [v 0.2.2 / 17.01.011]
Prints…

URL http://localhost:8080/telemator/print/circuitcard?filter=
%7B%22Circuit%22%3A%5B%2210000%22%2C%2210001%22%5D%7D

Method GET

HTTP status codes 200 – (Ok) If specified print returned
403 - (Forbidden) Print failed
404 – (Not found) Print not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

HTTP Headers Accept: text/plain or application/pdf

Response payload The print as the specified media type (txt, pdf)

Make print [v 0.2.2 / 17.01.011]
Makes print

URL http://localhost:8080/telemator/makeprint/CircuitCard
http://localhost:8080/telemator/makeprint/NetdiagCircuit
http://localhost:8080/telemator/makeprint/EquipmentCard

From version 22.01.001:
http://localhost:8080/telemator/makeprint/CustomersWithCircuitsInTrace
http://localhost:8080/telemator/makeprint/CustomersWithCircuitsInCable
http://localhost:8080/telemator/makeprint/CustomersUsingCircuit

From version 22.01.020:
http://localhost:8080/telemator/makeprint/CableCard

From version 23.01.017:
http://localhost:8080/telemator/makeprint/ExcelPointRackContent
http://localhost:8080/telemator/makeprint/ExcelPointCableSpliceRoads

Method POST

HTTP status codes 201 – (Created) if print returned
403 - (Forbidden) Print failed
404 – (Not found) Print not found
406 - (Not acceptable) if the format of the incoming data for the new
resource is not valid.

Request payload

{
 // Filter for CircuitCard and NetdiagCircuit
 "Filter": {"Circuit" : ["10000","10001"]},

 // Filter for EquipmentCard
 "Filter": {"Equipment" : ["EQUIPMENT1"]},

 // Options for CircuitCard and NetdiagCircuit
 "Options": { "ShowFiberSpliceDetails" : true,
 "AddCirc_Superior" : true },

 // Filter for CustomersWithCircuitsInTrace
 "Filter": { "PipeMain" : ["TRACE1","TRACE2"]}}

 // Filter for CustomersWithCircuitsInCable
 "Filter": { "Cable" : ["CABLE1","CABLE2"]}}

 // Filter for CustomersUsingCircuit
 "Filter": { "Circuit" : ["10000","10001"]}}

 // Filter for CableCard

http://localhost:8080/telemator/makeprint/CircuitCard
http://localhost:8080/telemator/makeprint/NetdiagCircuit
http://localhost:8080/telemator/makeprint/EquipmentCard
http://localhost:8080/telemator/makeprint/CustomersWithCircuitsInTrace
http://localhost:8080/telemator/makeprint/CustomersWithCircuitsInCable
http://localhost:8080/telemator/makeprint/CustomersUsingCircuit
http://localhost:8080/telemator/MakePrint/CableCard
http://localhost:8080/telemator/makeprint/ExcelPointRackContent
http://localhost:8080/telemator/makeprint/ExcelPointCableSpliceRoads

Version: 2023-07-20 Page 17

 "Filter": { "Cable" : ["CABLE1"," CABLE2"]}}

 // Filter for ExcelPointRackContent, ExcelPointCableSpliceRoads
 "Filter": { "End" : ["P123"]}}

 // FileFormat can be txt, tsv or pdf, but pdf will only work
 // when a supported printer driver for PDF is installed:
 // - "Microsoft Print to PDF" included with Windows 10 / Server 2016
 // - "Foxit Reader PDF Printer" is an “unsupported” alternative
 // for older windows versions (normally works fine when you
 // follow instructions exactly, but hard to troubleshoot):
 // https://mxdata.no/download/foxitinstallation.html
 "FileFormat" : "pdf",
 "PaperOrientation : "Landscape" // or Portrait
 "PaperSize" : "A3" // all sizes supported by driver should be ok
 // A2, A3, A4, A5, USER-w-h (w and h in 1/10 millimeters)
}

Response payload After version 23.01.007: {
 "files" : [
 { "name" : "Pr.pdf", "data" : "encoded content", "encoding" : "base64" },
 { "name" : "Pr.xlsx", "data" : "encoded content", "encoding" : "base64" },
 { "name" : "Pr.txt", "data" : "plain UTF-8 text content", "encoding" : "" },
 { "name" : "Pr.tsv", "data" : "plain UTF-8 text content", "encoding" : "" }
]
}
Before version 23.01.007: {
 "Print_PDF_base64" : "xxx…" // base64 encoded PDF
 "Print_Txt : "xxx…" // UTF-8
}

https://mxdata.no/download/foxitinstallation.html

Version: 2023-07-20 Page 18

Find faulty core from point and distance [v 1.2.0 / 20.01.016]
URL http://localhost:8080/telemator/fn/FindCoreViaSpliceFromEnd?cable={cable

id}&core={core number}&endch={A|B}&distance={meters}

Method GET

Parameters cable - urlEncoded cable id
core - fiber number
endch - cable end A or B
distance - distance to fault from given cable end in meters

HTTP status codes 200 – OK
404 – None found

Example response payload {
 "Cable": {
 "Cable": "K06->8",
 "Core": 1,
 "End": "P06",
 "computed_MetersFromEnd": 6
 },
 "Trace": {
 "End": "P06",
 "PipeMain": "T06->7",
 "PipeSub": "-",
 "computed_MetersFromEnd": 6
 }
}

Count number of free ports in point or equipment [v 1.2.0 / 21.01.018]
URL http://localhost:8080/telemator/fn/CountFreePorts?point={id}

http://localhost:8080/telemator/fn/CountFreePorts?equipment={id}

Method GET

Parameters point - urlEncoded point id
equipment- urlEncoded equipment id

HTTP status codes 200 – OK
404 – None found

Example response payload { "FreePorts": 20 }

Get next free id a POST with “AllowAutoId” would make. [v 1.2.0 / 20.01.053]
URL http://localhost:8080/telemator/fn/GetNextFreeId?table={name}&

id={id}&CopyFrom=TEMPLATE-111

Method GET

Parameters table - Project, Point, Trace, Cable, Equipment, Circuit or Customer
id - suggested id, optional, might be ignored
 (depends on configuration)
CopyFrom - TEMPLATE, optional

HTTP status codes 200 – OK
404 – None found

Example response payload { " NextFreeId" : "TEST1234" }

Get ID from Alias. [v 1.2.0 / 23.01.019]
URL http://localhost:8080/telemator/fn/alias?table={name}&alias={alias}

Method GET

Parameters table - Point, Trace, Cable, Equipment, Circuit
alias - the alias you want to find ID for

HTTP status codes 200 – OK
404 – None found

Example response payload {"ElmAlias":[{ "RelToKey":"POINT_ID1","AliasTxt":"A1","Remark":""}]}

http://localhost:8080/telemator/fn/FindCoreViaSpliceFromEnd?cable=%7bcable
http://localhost:8080/telemator/fn/CountFreePorts?point=%7bid%7d
http://localhost:8080/telemator/fn/CountFreePorts?equipment=
http://localhost:8080/telemator/fn/GetNextFreeId?
http://localhost:8080/telemator/fn/alias?

Version: 2023-07-20 Page 19

Experimental for FT-Net: Get circuits in points [v 1.2.0 / 22.01.013]
Gets all circuits in points by filtering on point attributes.

URL http://localhost:8080/telemator/fn/CircuitsOnAddress?
type={point type}&lat={deg north}&lng={deg east}&distance={meter} + more

Method GET

Parameters Type - Exact point type
Addr1 - Exact address 1 (Room, detail)
Addr2 - Exact address 2 (Street address)
Addr3 - Exact address 2 (postal number and place)
Cadastre - Exact point cadastre

lat - Decimal degrees north coordinate
lng - Decimal degrees east coordinate
distance – maximum meters from given lat,lng

HTTP status codes 200 – OK
404 – None found

Example response payload
for parameters:
?type=KUNDETERMINERING
&lat=62.009
&lng=-6.774
&distance=200

{ "End": [
 {
 "computed_Distance": 69
 "End": "15331",
 "Type": "KUNDETERMINERING",
 "Addr2": "B\u00f8g\u00f8ta 3B",
 "Addr3": "100-T\u00f3rshavn, T\u00f3rshavnar",
 "Circuit": [
 {"Circuit": "114432","Type": "5"},
 {"Circuit": "114433","Type": "3"},
],
 }
]
}

Experimental for FT-Net: Get routing for PON circuit [v 1.2.0 / 22.01.024]

Get routing from customer site to central equipment house, based on circuit id on a customer site.

Input is a current routed circuit id (Lxxxxxx), which is used on a customer address.

Return data is circuits and splitters between customer and node. Use

http://localhost:8080/telemator/circuits/{id}/routing to get more routing details for one circuit.

URL http://localhost:8080/telemator/fn/CircuitLvlsUp?
circuit={circuit id}

Method GET

Parameters Circuit - Circuit id

HTTP status codes 200 – OK
404 – None found

Example response
payload:

{ "Circuit" : {
 "computed_Circuit_LvlsUp" : [
 // Customer circuit stop-end and splitter leading next circuit
 {"Circuit" : " CIRCUIT-FROM-CUSTOMER ", "computed_Lvl" : 1,
 "computed_End_B" : { "End" : "P-KUNDE",
 "computed_Fineterm" : [{"Plinth" : "3", "Pos" : "1"}]},
 "computed_Equipment_LvlUp" : { "End" : "SPLITTER1" },
 },

 // Circuit from previous to next splitter
 { "Circuit" : "CIRCUIT2", "computed_Lvl" : 2,
 "computed_Equipment_LvlUp" : { "End" : "SPLITTER2" },
 },

 // Last circuit (no more splitters) and circuit start-end
 { "Circuit" : "CIRCUIT-TO-NODE", "computed_Lvl" : 3,
 "computed_End_A" : { "End" : "P-NODE",
 "computed_Fineterm" : [{"Plinth" : "3", "Pos" : "1"}]}
 }
]
 }
}

http://localhost:8080/telemator/fn/CircuitsOnAddress?
http://localhost:8080/telemator/circuits/%7bid%7d/routing
http://localhost:8080/telemator/fn/CircuitLvlsUp?

Version: 2023-07-20 Page 20

Experimental for Eviny: Get date for latest equipment change [v 1.2.0 / 22.01.054]

Use http://localhost:8080/telemator/equipment/{id}/cards to get more details about one equipment.

URL http://localhost::8080/telemator/fn/GetEquipmentUpdWhen?
fromDate=YYYY-MM-DD&inclDate=YYYY-MM-DD

Method GET

Parameters fromDate – Date in YYYY-MM-DD format

HTTP status codes 200 – OK
404 – None found

Example response
payload:

{ "Equipment": [
 { "End": "EQUIPM1", "Type": "TP",
 "UpdWhen": "2022-10-28T19:22:41Z"
 }],
 "EqCard": [
 { "End": "EQUIPM1", "Card": "CARD1",
 "UpdWhen": "2022-10-28T19:19:01Z"
 }
],
 "EqPort": [
 { "End": "EQUIPM1", "Card": "CARD1", "Port": 1,
 "UpdWhen": "2022-10-28T19:23:01Z",
 "computed_PortName": "1 ETH1",
 "computed_UpdWhen": "2022-10-28T19:23:01Z"
 },
 { "End": "EQUIPM1", "Card": "CARD1", "Port": 2,
 "UpdWhen": "2022-10-28T19:23:10Z",
 "computed_PortName": "2 USB",
 // Computed_UpdWhen is the latest date for port sub-elements:
 // (port, pins on the port, cable cores on the port)
 "computed_UpdWhen": "2022-10-28T19:23:10Z"
 }
]
}

Experimental for Micado: Get data from Telemator lists [v 1.2.0 / 23.01.031]

URL http://localhost::8080/telemator/fn/onecable_listTraces?cable={id}

Method GET

Parameters

HTTP status codes 200 – OK
404 – None found

Example response
payload:

{ "listMetadata": {
 "listHeader": [
 {"key": "computed_order" , "label": "Rekkef\u00f8lge"},
 {"key": "PipeMain.PipeMain", "label": "Tras\u00e9"},
 {"key": "PipeMain.Length" , "label": "Lengde"},
 {"key": "PipeSub.PipeSub" , "label": "R\u00f8r"},
 {"key": "PipeSub.Diameter" , "label": "\u00f8"},
 {"key": "computed_ToEnd" , "label": "Til ende"}
]
 },
 "listRows": [
 {
 "computed_order": " 1 A",
 "PipeMain.PipeMain ": "-",
 "PipeMain.Length": "-",
 "PipeSub.PipeSub": "-",
 "PipeSub.Diameter": "-",
 "computed_ToEnd": "-"
 },
 {
 etc...
 }
]
}

http://localhost:8080/telemator/equipment/%7bid%7d/cards
http://localhost::8080/telemator/fn/GetEquipmentUpdWhen?
http://localhost::8080/telemator/fn/onecable_listTraces?

Version: 2023-07-20 Page 21

Appendix

The application.yml file
The application.yml file (C:\Telerest\application.yml) is the central file controlling the various aspects

of the TeleREST application.

The most important configuration option in the file is the database.location key. This key tells

TeleREST how to connect to the database. Normally this is the file representing the database, e.g.:

X:\Telemator\MyNet\ database.udl or X:\Telemator\MyNet\TM_xxx.tmdb

The web service listening port can be changed with the server.port key. If the server should be

listening to only a certain interface, the IP address of that interface can be set with the server.address

key.

TeleREST is built on a framework called Spring Boot. In addition to providing the REST services

described above, it also has several other endpoints, including:

• http://localhost:8080/actuator/health - Will answer 200 OK if the server is up and running.

• http://localhost:8080/actuator/metrics - Provides several metrics from the running server,

including the number and last response time of URLs accessed.

As shown above, these management services are available on the same port and address as the

normal web services. Since some of these services are sensitive, it can make sense to only make

them available on a certain interface or a different port which is protected by a firewall, or even to

completely disable the management services. This can be achieved with the management.server.port

and management.server.address keys. Set the management.server.port to -1 to completely disable

the management services.

For more information about configuring the Spring Boot framework and the management services,

have a look at the Spring Boot documentation, in particular have a look at chapters 30 onward.

Actuator endpoints
Actuator endpoints allow you to monitor and interact with TeleREST.

Endpoint ID Description Sensitive
default

auditevents Exposes audit events information for the current application. True
beans Displays a complete list of all the Spring beans in your application. True
conditions Displays an auto-configuration report showing all auto-configuration

candidates and the reason why they ‘were’ or ‘were not’ applied.
True

configprops Displays a collated list of all @ConfigurationProperties. True
threaddump Performs a thread dump. True
env Exposes properties from Spring’s ConfigurableEnvironment. True
health Shows application health information. False
heapdump Returns a GZip compressed hprof heap dump file. True
info Displays arbitrary application info. False
loggers Shows and modifies the configuration of loggers in the application. True
metrics Shows ‘metrics’ information for the current application. True
mappings Displays a collated list of all @RequestMapping paths. True
shutdown Allows the application to be gracefully shutdown (not enabled). True
httptrace Displays trace information (by default the last 100 HTTP requests). True

http://projects.spring.io/spring-boot/
http://localhost:8080/actuator/health
http://localhost:8080/actuator/metrics
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle

Version: 2023-07-20 Page 22

By default, all endpoints except for shutdown are enabled. Likewise, you can also set the “sensitive”

flag of all endpoints. By default, the sensitive flag depends on the type of endpoint (see the table

above). This is done in the application.yml file.

CORS
If you want to consume TeleREST endpoint from the browser, you need to enable CORS. You can

control the Access-Control-Allow-Origin, Access-Control-Allow-Methods, Access-Control-Allow-

Headers, and Access-Control-Expose-Headers through the application.yml file. The corresponding

keys are: cors.allowedOrigins, cors.allowedMethods, cors.allowedHeaders, and cors.exposedHeaders.

These methods all take a comma-separated list of values.

Multiple installations on the same server
If you want to use TeleREST on many databases, you must have one TeleREST installation (one folder)

for each. Each installation must have its own port. All TeleREST installations will share the same

Telemator installation.

Example database/port configuration for database TM_Alpha in folder c:\TeleREST_Alpha

File c:\TeleREST_Alpha\application.yml
database:
 location: C:\Telemator\MittNett\TM_Alpha.udl
server:
 port: 8097
management:
 port: 8097

Example database/port configuration for database TM_Bravo in folder c:\TeleREST_Bravo

File c:\TeleREST_Bravo\application.yml
database:
 location: C:\Telemator\MittNett\TM_Bravo.udl
server:
 port: 8098
management:
 port: 8098

If run as a service, it is also helpful for the administrator to give the services more descriptive names

in services.msc than TeleREST.

Example service name configuration for TM_Alpha in folder c:\TeleREST_Alpha

File c:\TeleREST_Alpha\telerest.xml
<service>
 <id>TeleREST_Alpha</id>
 <name>TeleREST TM_Alpha</name>
 <description>TeleREST for TM_Alpha database, port 8097.</description>
 <executable>telerest.bat</executable>
 <logmode>rotate</logmode>
</service>

Example service name configuration for TM_Bravo in folder c:\TeleREST_Bravo

File c:\TeleREST_Bravo\telerest.xml
<service>
 <id>TeleREST_Bravo</id>
 <name>TeleREST TM_Bravo</name>
 <description>TeleREST for TM_Bravo database, port 8098.</description>
 <executable>telerest.bat</executable>
 <logmode>rotate</logmode>
</service>

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Version: 2023-07-20 Page 23

Troubleshooting IP port

Who is using port 8080? TeleREST will not start when the port is in use.

Run this cmd.exe command to find the process id (PID): netstat -aon | findstr 8080

Start Windows Task Manager, Details, sort on PID and you will see the process name.

Command to test connection to port 8080 (if connect does not fail, a process is listening to the port)
telnet.exe localhost 8080

Ctrl+C

Testing with curl - examples (curl command must be on a single line without line-feeds)

Test GET
curl.exe http://localhost:8080/telemator/points/SLETTMEG -H "Accept:application/json"

curl.exe http://localhost:8080/telemator/points/SLETTMEG -H "Accept:*/*"

Test POST
curl.exe --verbose http://localhost:8080/telemator/customers/SLETTMEG -X POST

-H "Content-Type:application/json;charset=UTF-8" -H "Accept:application/json"

--data "{\"AllowAutoId\":true,\"Customer\":{\"name\":\"Toyota Norway\"}}"

Test PUT
curl.exe --verbose http://localhost:8080/telemator/points/SLETTMEG -X PUT

-H "Content-Type:application/json;charset=UTF-8" -H "Accept:application/json"

--data "{\"Point\":{\"type\":\"Type5\"}}"

Test DELETE with json data in a separate file named jsonUTF8.json
curl.exe --verbose http://localhost:8080/telemator/customers/SLETTMEG -X POST

-H "Content-Type:application/json;charset=UTF-8" -H "Accept:application/json"

--data @jsonUTF8.json

Test Source-User (used for logging in Telemator when specified in http headers)
curl http://localhost:8080/telemator/customers/SLETTMEG -X POST

-H "Content-Type:application/json;charset=UTF-8" -H "Accept:application/json"

-H "Source-System:XYZ" -H "Source-User:Sverre"

--data "{\"AllowAutoId\":true,\"Customer\":{\"name\":\"Toyota Norway\"}}"

http://localhost:8080/telemator/points/SLETTMEG
http://localhost:8080/telemator/points/SLETTMEG
http://localhost:8080/telemator/customers/SLETTMEG

